块状链表
块状链表大概就长这样……
不难发现块状链表就是一个链表,每个节点指向一个数组。 我们把原来长度为 n 的数组分为 个节点,每个节点对应的数组大小为 。 所以我们这么定义结构体,代码见下。 其中 sqn
表示 sqrt(n)
即 ,pb
表示 push_back
,即在这个 node
中加入一个元素。
实现
| struct node {
node* nxt;
int size;
char d[(sqn << 1) + 5];
node() { size = 0, nxt = NULL, memset(d, 0, sizeof(d)); }
void pb(char c) { d[size++] = c; }
};
|
块状链表应该至少支持:分裂、插入、查找。 什么是分裂?分裂就是分裂一个 node
,变成两个小的 node
,以保证每个 node
的大小都接近 (否则可能退化成普通数组)。当一个 node
的大小超过 时执行分裂操作。
分裂操作怎么做呢?先新建一个节点,再把被分裂的节点的后 个值 copy
到新节点,然后把被分裂的节点的后 个值删掉(size--
),最后把新节点插入到被分裂节点的后面即可。
块状链表的所有操作的复杂度都是 的。
还有一个要说的。 随着元素的插入(或删除), 会变, 也会变。这样块的大小就会变化,我们难道还要每次维护块的大小?
其实不然,把 设置为一个定值即可。比如题目给的范围是 ,那么 就设置为大小为 的常量,不用更改它。
| list<vector<char>> orz_list;
|
STL 中的 rope
导入
STL 中的 rope
也起到块状链表的作用,它采用可持久化平衡树实现,可完成随机访问和插入、删除元素的操作。
由于 rope
并不是真正的用块状链表来实现,所以它的时间复杂度并不等同于块状链表,而是相当于可持久化平衡树的复杂度(即 )。
可以使用如下方法来引入:
| #include <ext/rope>
using namespace __gnu_cxx;
|
关于双下划线开头的库函数
OI 中,关于能否使用双下划线开头的库函数曾经一直不确定,2021 年 CCF 发布的 关于 NOI 系列活动中编程语言使用限制的补充说明 中提到「允许使用以下划线开头的库函数或宏,但具有明确禁止操作的库函数和宏除外」。故 rope
目前可以在 OI 中正常使用。
基本操作
操作 | 作用 |
---|
rope <int > a | 初始化 rope (与 vector 等容器很相似) |
a.push_back(x) | 在 a 的末尾添加元素 x |
a.insert(pos, x) | 在 a 的 pos 个位置添加元素 x |
a.erase(pos, x) | 在 a 的 pos 个位置删除 x 个元素 |
a.at(x) 或 a[x] | 访问 a 的第 x 个元素 |
a.length() 或 a.size() | 获取 a 的大小 |
例题
POJ2887 Big String
题解: 很简单的模板题。代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77 | #include <cctype>
#include <cstring>
#include <iostream>
using namespace std;
constexpr int sqn = 1e3;
struct node { // 定义块状链表
node* nxt;
int size;
char d[(sqn << 1) + 5];
node() { size = 0, nxt = NULL; }
void pb(char c) { d[size++] = c; }
}* head = NULL;
char inits[(int)1e6 + 5];
int llen, q;
void readch(char& ch) { // 读入字符
do cin >> ch;
while (!isalpha(ch));
}
void check(node* p) { // 判断,记得要分裂
if (p->size >= (sqn << 1)) {
node* q = new node;
for (int i = sqn; i < p->size; i++) q->pb(p->d[i]);
p->size = sqn, q->nxt = p->nxt, p->nxt = q;
}
}
void insert(char c, int pos) { // 元素插入,借助链表来理解
node* p = head;
int tot, cnt;
if (pos > llen++) {
while (p->nxt != NULL) p = p->nxt;
p->pb(c), check(p);
return;
}
for (tot = head->size; p != NULL && tot < pos; p = p->nxt, tot += p->size);
tot -= p->size, cnt = pos - tot - 1;
for (int i = p->size - 1; i >= cnt; i--) p->d[i + 1] = p->d[i];
p->d[cnt] = c, p->size++;
check(p);
}
char query(int pos) { // 查询
node* p;
int tot;
for (p = head, tot = head->size; p != NULL && tot < pos;
p = p->nxt, tot += p->size);
tot -= p->size;
return p->d[pos - tot - 1];
}
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
cin >> inits >> q;
llen = strlen(inits);
node* p = new node;
head = p;
for (int i = 0; i < llen; i++) {
if (i % sqn == 0 && i) p->nxt = new node, p = p->nxt;
p->pb(inits[i]);
}
char a;
int k;
while (q--) {
readch(a);
if (a == 'Q')
cin >> k, cout << query(k) << '\n';
else
readch(a), cin >> k, insert(a, k);
}
return 0;
}
|
本页面最近更新:2024/10/9 22:38:42,更新历史
发现错误?想一起完善? 在 GitHub 上编辑此页!
本页面贡献者:HeRaNO, konnyakuxzy, ChungZH, dkz051, Enter-tainer, iamtwz, Ir1d, kenlig, ksyx, littlefrog, littlefrogfromthenorth, megakite, shuzhouliu, StudyingFather, Tiphereth-A, Xeonacid
本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用